Notice: Undefined variable: permalink in /home/mryscc50ot3h/public_html/topo.inc on line 7

Notice: Undefined variable: meta_title_facebook in /home/mryscc50ot3h/public_html/topo.inc on line 12

Notice: Undefined variable: meta_desc_facebook in /home/mryscc50ot3h/public_html/topo.inc on line 17
Brazil  Portugal  English
Weather and Geoestationary Satellites
As its name says, are satellites whose main objective is to provide data and images of the displacement of masses of air, temperature, wind, etc.. In this category can be found the GOES and Meteosat geostationary satellites in addition to the satellites of NOAA series. The weather satellites are the most important tool to weather forecast.
Satellite Launch Norad Incl.
degrees
Apogee
Km
Perigee
Km
Period
min
Options
NOAA 15199825338U99º811797101Tracking
DMSP 5D-3 F15 (USA 147)199925991U99º843830102Tracking
DMSP 5D-3 F16 (USA 172)200328054U99º852840102Tracking
NOAA 18200528654U99º860838102Tracking
METEOSAT-9 (MSG-2)200528912U35795357791436Tracking
EWS-G1 (GOES 13)200629155U35795357781436Tracking
DMSP 5D-3 F17 (USA 191)200629522U99º852838102Tracking
FENGYUN 3A200832958U99º836822101Tracking
FENGYUN 2E200833463U35794357811436Tracking
NOAA 19200933591U99º859841102Tracking
GOES 14200935491U35814357601436Tracking
METEOR-M 1200935865U99º818816101Tracking
DMSP 5D-3 F18 (USA 210)200935951U99º855838102Tracking
GOES 15201036411U35823358161438Tracking
COMS 1201036744U35791357821436Tracking
FENGYUN 3B201037214U99º861828102Tracking
SUOMI NPP201137849U99º827826101Tracking
FENGYUN 2F201238049U35799357671436Tracking
METEOSAT-10 (MSG-3)201238552U35793357831436Tracking
METOP-B201238771U99º821819101Tracking
FENGYUN 3C201339260U98º847831102Tracking
METEOR-M 2201440069U98º827818101Tracking
HIMAWARI-8201440267U35791357821436Tracking
FENGYUN 2G201440367U35799357761436Tracking
METEOSAT-11 (MSG-4)201540732U35791357851436Tracking
ELEKTRO-L 2201541105U35789357821436Tracking
HIMAWARI-9201641836U35790357821436Tracking
GOES 16201641866U35788357841436Tracking
FENGYUN 4A201641882U35804357691436Tracking
CYGFM05201641884U35º51549695Tracking
CYGFM04201641885U35º51249695Tracking
CYGFM02201641886U35º51249595Tracking
CYGFM01201641887U35º51649795Tracking
CYGFM08201641888U35º51449695Tracking
CYGFM07201641890U35º51149595Tracking
CYGFM03201641891U35º51149695Tracking
FENGYUN 3D201743010U99º829827101Tracking
NOAA 20201743013U99º828826101Tracking
GOES 17201843226U35796357761436Tracking
FENGYUN 2H201843491U35799357741436Tracking
METOP-C201843689U99º823817101Tracking
GEO-KOMPSAT-2A201843823U35798357771436Tracking
METEOR-M2 2201944387U99º814811101Tracking
FENGYUN 3E202149008U99º828824101Tracking
GOES 18202251850U35789357841436Tracking
NOAA 21 (JPSS-2)202254234U99º828826101Tracking
METEOSAT-12202254743U35799357711436Tracking
Satellites Orbital Parameters

The table above shows the main parameters and information available for this satellite.

Satellite: This column shows the name of the object in orbit. In some cases the official name ends with the words R/B, meaning that it is a piece or any stage from some rocket booster.

Norad: North American Aerospace Defense Command, the Air Defence Command of the United States, responsible for the catalogue of objects in orbit. The number indicates the record of the satellite in the Norad archives.

Inclination: Angle formed between the orbit of the satellite and terrestrial line of the equator. Satellites with inclination of 0 degrees follow the equator line and are called equatorial orbit satellites. When the inclination is 90 degrees its orbit crosses the terrestrial poles and are called polar orbiting satellites. When the inclination is less or equal latitude of the place of observation, the satellite be seen directly if conditions permit.

Apogee: Maximum distance that the object is far from the center of the Earth.

Perigee: Highest approchement between the object and the center of the Earth. The figures shown already discounting the radius of the Earth, 6378 Km. One Perigee value equal to the value of Apogee indicates a circular orbit satellite.

Period: Value in minutes that a satellite takes to complete one orbit of perigee to perigee. Satellites in polar orbit, positioned at 800 km in altitude will take approximately 102 minutes to complete one revolution. The International Space Station, 350 km above the surface, completes its orbit in 90 minutes.

The lower the altitude of a satellite, more speed he needs to keep in orbit and not re-enters the atmosphere.

Geostationary satellites have a period of approximately 1436 minutes with inclination of 0 degrees (equatorial orbit). Because this is the same time it takes Earth to complete one turn on its axis, geostationary satellites appear static on the same geographic point. To this happens the satellite should be positioned about 36 thousand kilometers in altitude.

Note and Frequency: Filled with additional information where possible. The frequencies shown, when provided, are those captured by enthusiasts or informed by the official organizations of disclosure.

Satview - All Rights Reserved 2008 - 2023
Privacy policy