Brazil  Portugal  English
The space junk is forecast to reentry at UTC +/- 8 hours

Forecast of Reentry Location


Update Fri 28-Aug-2015 22:10 UTC

The map above shows the location of the possible reentry of the space junk () predicted by modeling of orbital evolution until the fragment or satellite reaches the altitude of nominal burst.

According to the forecast made by Satview.org, the object's reentry will occur in at UTC, above the coordinates shown on map.

Satellite Launch Norad Incl.
degrees
Apogee
Km
Perigee
Km
Period
min
Options
SL-4 R/B
Reentry: (YMD) 2015-08-1
201440359U67º16912287Reentered!
Lat=-24   Lon=82
H-2A R/B
Reentry: (YMD) 2015-08-8
201137955U97º13611787Reentered!
Lat=-14   Lon=190
SL-4 R/B
Reentry: (YMD) 2015-08-17
201540700U98º16911487Reentered!
Lat=-19   Lon=156
FLOCK 1B-10
Reentry: (YMD) 2015-08-23
199840429U52º16815488Reentered!
Lat=51.2   Lon=334.4
CZ-4B R/B
Reentry: (YMD) 2015-09-5
201540702U97º30520090Forecast
FLOCK 1B-11
Reentry: (YMD) 2015-09-6
199840459U52º29629090Forecast
DELTA 2 R/B(2) (PAM-D)
Reentry: (YMD) 2015-09-20
200934662U40º114416598Forecast
FLOCK 1D-1
Reentry: (YMD) 2015-10-11
199840451U52º31731091Forecast
FLOCK 1B-22
Reentry: (YMD) 2015-10-14
199840428U52º32131891Forecast
FLOCK 1B-27
Reentry: (YMD) 2015-10-27
199840422U52º32431791Forecast
FLOCK 1B-6
Reentry: (YMD) 2015-11-14
199840454U52º33332891Forecast
FLOCK 1B-12
Reentry: (YMD) 2015-11-15
199840460U52º33332891Forecast
GEARRS-1
Reentry: (YMD) 2015-11-19
199840456U52º33733191Forecast
CZ-3B R/B
Reentry: (YMD) 2015-11-23
201037151U25º4842139139Forecast
FLOCK 1B-21
Reentry: (YMD) 2015-11-24
199840427U52º32332091Forecast
VERMONT LUNAR
Reentry: (YMD) 2015-12-16
201339407U41º37535692Forecast
PROMETHEUS 1-5
Reentry: (YMD) 2015-12-21
201339393U41º37936192Forecast
PROMETHEUS 1-3
Reentry: (YMD) 2016-01-8
201339408U40º38336592Forecast
PROMETHEUS 1-6
Reentry: (YMD) 2016-01-9
201339394U41º38436692Forecast
PROMETHEUS 1-2
Reentry: (YMD) 2016-01-13
201339391U40º38436692Forecast
PROMETHEUS 1-4
Reentry: (YMD) 2016-01-13
201339390U40º38536792Forecast
ORSES
Reentry: (YMD) 2016-01-28
201339386U40º39637892Forecast
FLOCK 1D-2
Reentry: (YMD) 2016-02-4
199840452U52º35935292Forecast
CZ-4C R/B
Reentry: (YMD) 2016-02-5
201036835U98º39633092Forecast
ARKYD-3R
Reentry: (YMD) 2016-02-6
199840742U52º39138692Forecast
SL-4 R/B
Reentry: (YMD) 2016-02-14
201540421U98º46030492Forecast
FLOCK 1E-11
Reentry: (YMD) 2016-03-1
199840738U52º39338892Forecast
ATLAS 1 CENTAUR R/B(1)
Reentry: (YMD) 2016-03-4
199322788U27º1442216101Forecast




The Satellite Path


The path to be followed by satellite (dotted line) does not change due to the fact that the satellite is falling and can be used to assess the trajectory of the object before and after possible fall. In the graph, each point marks the range of 1 minute.

Solar Flux and Other Variables


As much as the institutes and space agencies strive to provide correct data of the point where the space debris will fall, several factors may interfere with the accuracy of the prediction. Among the most important, the solar flux is the most critical because it determines the conditions of the upper atmosphere, increasing or decreasing the drag on the object.

Besides the solar flux acting on the aerodynamic characteristics, another variable rather difficult to be computed is the resistance of materials used in the construction of the object and the shape of the structure. Combined, these factors may determine different altitudes for the moment of rupture, causing errors of more than 30 km in altitude reentry provided.

Other variables that affect the calculation of reentry, although less important, are the gravitational perturbations of the Sun and Moon and also those exercised by large mountain ranges, above or below sea level.

The modeling used by Satview to compute the time of reentry uses solar flux data obtained at the time of modeling, and prediction of the behavior of the sun for the next 5 days. With this, the margin of error of prediction is + / - 3 revolutions for satellites or debris in uncontrolled reentry.

Altitude of Reentry


Spacecraft reentering the atmosphere without control usually break between 72 and 84 km altitude due to temperature and aerodynamic forces acting on the structure.

The nominal breakup altitude is 78 km, but big satellites that have larger and denser structures survive longer and break down at lower altitudes. Usually, solar panels are destroyed before any component, at altitudes between 90 and 95 km.

Satview - All Rights Reserved 2008 - 2015
Privacy policy